

FICHE TECHNIQUE - GT 2067

Le GT2067 a été développé en associant un silicone conducteur chargé Argent pur (GT2020) à un fluorosilicone d'étanchéité environnementale (GT67). Ce mélange a pour objectif de répondre aux contraintes d'un environnement corrosif en dissociant la fonction de blindage de la fonction d'étanchéité environnementale.

- Hautement conducteur
- Très faible résistivité volumique
- Excellente performance d'attenuation
- Résistance à haute température (200°C en pointe)

Propriétés - Partie conductrice	Normes - Test	GT 2020
Elastomère		Silicone
Charge		Argent pur
Résistivité volumique Ω.cm	MIL G 83528	< 0.006
Dureté shore A	ASTM D 2240	75 ± 7
Densité g/cm³	ASTM D 792 Méthode A	3.90
Résistance à la rupture Mpa	ASTM D 412 Méthode A C	4.61
Allongement à la rupture %	ASTM D 412 Méthode A C	355
Résistance au déchirement kg/cm	ASTM D 624 C	13.73
Déformation rémanente après compression 70 heures à 100°C %	ASTM D 395 Méthode B	33.12
Efficacité de blindage : 20 MHz 100 MHz 500 MHz 2 GHz 10 GHz		110 dB 110 dB 110 dB 110 dB 110 dB
Température d'utlisation °C		-55 à +125
Couleur		Beige clair

Propriétés - Partie étanchéité environnementale	Normes - Test	GT 67
Masse spécifique à 25°C	ASTM D 792	1.46
Dureté Shore A ± 5	ASTM D 2240	60
Résistance à la traction Psi Mpa	ASTM D 412	1200 8.30
Allongement %	ASTM D 412	300
Déformation rémanente après compression 22 heures à 177°C (%)	ASTM D 395 méthode B	25
Couleur		Bleu clair

POSSIBILITE DE MISE EN FORME

Moulé

Découpé

Extrudé

Adhérisé par vulcanisation

